Global Modeling of the Coupled Earth System: Understanding and Predictions

XIX Meeting of Graduate Students in Meteorology (EPGMET) National Institute of Spatial Research (INPE)

V. Ramaswamy

Modeling, Understanding and Predicting the Earth System

NOAA/OAR/GFDL: An Integrative Modeling Strategy

Atmosphere, Oceans, Land, Ice, & Ecosystems

. 🤇

Modeling Essentials

High-Performance Computing

Major advancements in Weather & Climate science have come about through mathematical modeling of the Earth System on High-Performance Computers

original image source: NOAA -GFDL

source: ncrc.gov (a NOAA/DoE partnership)

3

Governing Processes

Physical climate: Coupled atmosphere-ocean-land-ice system

Atmosphere & Weather

Unified Weather-Climate Prediction System

- To develop a unified modeling system for weather and climate simulations
- To unify regional (convective-scale) and global modeling systems
- July 2016:

NOAA selected FV3 (Finite-volume core on the Cubed-Sphere) for NGGPS (Next Generation Global Prediction System)

• June 2019:

NWS operational forecasts with the "GFSv15" (with FV3 dy-core)

Credit: S. J. Lin

Frontiers in Weather-to-Climate Modeling

Feasibility, Fidelity, and Forecast accuracy of FV3-based global cloud-resolving model for weather, medium-range, subseasonal, seasonal, annual, decadal

OLR: 40-day prediction experiment (2020 FV3 prototype, 3-km, $\Delta t = 225 \ sec$)

FV3-powered GFS for regional-global predictions

NOAA Forecasts: Evolution of improvements

Courtesy Linjiong Zhou; Harris et al, 2020, JAMES

Hurricanes Laura and Marco

3-km T-SHiELD struggled early but was excellent after Laura passed Cuba. **Better Initialization**

J-H Chen et al. 2019; M Tong et al. 2020

Better Models

Better Forecasts!

See real-time forecasts at shield.gfdl.noaa.gov

Efficient Convective-Scale S2S

4-km Maritime Continent Two-Way Nest improves predictability and propagation of MJO compared to 16-km uniform Simple mixed-layer ocean is a must

► 40 days in 8 hours with 4K cores Courtesy Kun Gao

5-km nested

HSS for explicitly-simulated severe weather activity (30 days, March-June) in CL-SHiELD 10member ensemble

➤ 30 days in 8 hours with 2112 cores

Courtesy Kai-Yuan Cheng

The MOM6 ocean model

Embedding SIS2 sea-ice & GFDL icebergs in MOM6

Free Community Open Development with deliberate ocean model software design Design drew upon experience from MOM4/5, MITgcm, HIM, GOLD, Poseidon, ...

Submesoscale Ocean Processes are Crucial for Ocean Modeling and

Future Predictions and Projections

Examples of Important MOM6 Applications

- Idealized process studies
- GFDL's ESM4/CM4, SPEAR coupled models
- Ice-sheet ocean interactions
- NCAR CESM3
- Australian COSIMA Consortium
- Regional configurations for fishery management
- NOAA/NCEP CFS-v3 coupled seasonal forecasts
- U.S. Navy HYCOM successor in near-term forecasts (~2025?)

Vorticity in study of resolution dependent eddy params. Hallberg (2013) *Ocean Modelling*

Surface Vorticity in CM4 prototype Adcroft et al. (2019) *JAMES*

Schematic illustration of dynamically coupled ice-sheet & ocean models. Goldberg et al. (2012) *J. Geophys. Res.*

Future directions: MOM6 regional modeling

- Regional climate impacts / Process studies / Hi-res development
- Exploratory development in collaboration with Rutgers group

Courtesy Alistair Adcroft

Using MOM6 for Regional Modeling

• Regional models permit much finer resolution than is practical in global configurations.

Images Courtesy E. Curchitser, A. Ross, and K. Hedstrom

- The MOM6 algorithm offers advantages & efficiencies for Earth System Models with multiple bio-geo-chemical fields.
 - The same advantages apply to regional ecosystem models.
 - A regional modeling community has developed around MOM6 with NOAA-Fisheries Support and broader interest.

Land and Ecosystems

NORR COMPANY

NOAA/OAR/GFDL 4th Generation Coupled model, ESM4.1

Land Model capturing 30m-scale water heterogeneity

Simulations between 2002 and 2014 (Spin-up 1974-2001)

Where we want to go: Incorporation of fine scale local information for decisionrelevant Earth System Model Predictions

NOAA/ GFDL Seamless Modeling System (from Weather to Climate)

NOAA: Seamless Modeling of the Earth System

→ → Understanding, Applications, Predictions & Projections

Series-4 Models: Reduction of biases

MJO Eastward Propagation

Series-4 Models: AM4, CM4, ESM4: NOAA models for WCRP CMIP6

AMIP RMSE Comparison (SST coupled)

Model	CM2/AM2	CM3/AM3	CM4/AM4
(CM) SST (K)	1.2	1.1	0.84
OLR (W/m2)	7.3	8.3	4.3
TOA SW (W/m2)	12.7	11.4	7.6
Precipitation (mm/day)	1.14	1.03	0.84
NH DJF SLP (hPa)	2.39	1.87	1.84
Zonal mean zonal wind (m/s)	1.52	1.52	0.76

Credit: Ming Zhao

24

Strongly Improved Regional Precipitation

Pacific "Double ITCZ" Precipitation Challenge

25

Climate Predictions and Projections (Seasonal-to-Centennial)

Components of Research Modeling Systems for the Study of Seamless Variability, Predictability and Projections

<u>Goal</u>: Seamless system for improved understanding leading to predictions and projections across Weather and Climate time scales.

Weather/ Climate events and extremes → widespread disruptions and losses

Seasonal Phenomena (Tropical storms)

NOAA/ GFDL Modeling: 1st global climate model to simulate category 4 and 5 hurricanes

Murakami et al. (2015, J. Climate)

Simulating Category 4-5 storms.

Strong hurricanes tend to cause the most impacts. A prediction model is needed that can capture these storms.

(25km FV3 atmosphere model coupled to 1° MOM5 ocean model) Murakami et al. (2015, J. Clim)

Time series of surface temperature, global TC number, IPO, and linear trends in TCF. Model simulations versus Observations

Hiroyuki Murakami et al. PNAS 2020;117:20:10706-10714

PNAS

Decadal to Multi-decadal Studies & Predictions

Projecting decadal scale changes in North American Hyrdoclimate -> anomalies in excess/ deficit of water

Key goal: Probabilistic assessment of decadal-scale changes in weather extremes over North America

Southern Ocean multidecadal sea trends may be significantly influenced by internal variability

Zhang et al, 2019 Nature Climate Change

35 🌔

Large Ensembles

Seasonal/Decadal prediction model is used to generate 30-member ensembles of projections for 1851-2100. ["SPEAR": NOAA/GFDL's latest Seasonal-to-Decadal Prediction Model]

- 1851-2010: Use observed atmospheric composition
- 2011-2100: Use projected atmospheric composition from SSP5-85

Historical & Scenario-projected Steric Sea Level Rise

- Both models agree with observed steric sea level rise trends.
- GFDL/ESM2M exhibits 18% more 21st century steric sea level rise than ESM2G.

Response of Storm-Related Extreme Sea Level Along the U.S. Atlantic Coast to <u>Combined Weather and Climate Forcing</u>

Time of emergence of the anthropogenic signal in storm related extreme sea level for New York, Miami, and New Orleans

150

100

50

Year

-0.5

Yin et al. (J. Climate 2020)

CM4.0 more recent NH warming than ESM4.1

d. S. Hemisphere Mean (90S - Eq.)

ESM4.1 Lower Climate Sensitivity than CM4.0

40

)

Earth System (Physical system and Ecosystem interactions)

Dynamic dust-ecosystems-climate interactions

- Dynamic hydrology and vegetation connect Australian dust emissions with ENSO
- ENSO creates precip anomalies =>dust anomalies.
- Dust optical depth anomalies are 30% up from seasonal mean
- Precip anomalies are 50% of seasonal mean

Evans, Ginoux et al., 2016, GRL

Regression of Dust

Attribution of Alaska's extreme fire season to anthropogenic activity – fire carbon emission

Skillful chlorophyll prediction in oceans beyond 1 year

Park et al., 2019. Seasonal to multiannual marine ecosystem prediction with a global Earth system model. Science. 365 (6450) 284-288.

Multiple weather-climate phenomena Variability, extremes, and change

National Research Council (2012) Recommendation: "Unified" modeling approaches

Weather to Climate is "Seamless"